Multi-granulation相关论文
Rough set theory is an important tool to solve uncertain problems.Attribute reduction,as one of the core issues of rough......
规则提取广泛应用于机器学习和数据挖掘中,是一种获得隐含知识的理论方法.针对不一致决策表,从多粒度角度出发,将不一致决策表转换......
许多已提出的规则提取算法不适用于混合数据,而混合数据广泛存在于实际应用中.针对上述问题,提出了一种基于多粒度一致覆盖约简的......
在多覆盖近似空间中研究多覆盖粗糙集模型的构造方法,根据两种不同策略,提出了多种乐观多覆盖粗糙集模型和悲观多覆盖粗糙集模型。分......
为了更有效地处理不精确性问题,将模糊变精度粗糙集与多粒度相结合,成为研究的热点。在不可交换的广义剩余格的基础上,定义了基于L-模......
在覆盖空间中,利用元素的最小描述并结合条件概率的概念,将经典多粒度粗糙集进行拓展,提出了3种条件概率描述下的多粒度覆盖粗糙集......
众所周知,一个粗糙集代数是由一个集合代数加上一对近似算子构成的。首先利用公理化的方法探讨经典的多粒化模糊粗糙集代数系统,可......
针对现有邻域多粒度粗糙集的定义及相应知识发现算法的不足,重新建立基于邻域多粒度粗糙集的知识发现模型.首先构建了多邻域半径下......
多粒度粗糙集已成为近年来研究的热点之一。定义了支撑函数,并讨论了支撑函数的性质;通过支撑函数建立了基于序信息系统的一般多粒......
多粒度粗糙集的研究是近几年来研究的热门课题之一。提出了一种介于乐观和悲观多粒度软粗糙集的新模型——程度多粒度软粗糙集。首......
从粒计算的角度,经典的粗糙集是建立在单一的粒(等价关系)上的,把它推广到建立在优势关系上的多粒度粗糙集,定义了多粒度下的上下近似。......
多粒度决策理论粗糙集是多粒度视角下三支决策中一种重要的模型。在数值型不完备数据下建立邻域容差关系;在其基础上提出乐观和悲......
多粒化粗糙集是Pawlak粗糙集非常重要的一种推广,主要给出当X是C(C')中任意有限个元素的并集时,乐观多粒化粗糙集(悲观多粒化粗糙集)上......
多粒度粗糙集是近几年来研究的热门课题之一。将多粒度粗糙集和双论域结合起来,首先定义了不同论域上的支撑函数;其次通过支撑函数建......